Avoiding “We can’t change that!”:
Software Architecture & Usability

Bonnie E. John
Human-Computer Interaction Institute
bej@cs.cmu.edu

Len Bass
Software Engineering Institute
lib@sei.cmu.edu

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh PA 15123

CHI 2003 Tutorial

Table of Contents

Agenda i
Biographical Sketches of the Instructors i
Objectives of the Course iv
Abstract %
Tutorial Slides
Introduction 1
The causes of “We can’t change that!” 5
Known solutions for certain types of usability changes 16
Usability & Software Architecture Approach (U&SA) 33
Canceling commands 42
Reusing information 52
Supporting international use 68
Observing system state 78
U&SA in analysis and design 93
Appendix |: General Usability Scenarios Al-1
Appendix II: Usability Benefits Hierarchy All-1
Appendix Ill: Software Engineering Tactics Hierarchy Alll-1
Appendix IV: Benefits/Tactics Matrix AlV-1
References ref-1

CHI2003 i John & Bass

Agenda

Time Topic

6:00-6:15 Instructor introduction, audience background & tutorial
objectives

6:15-6:35 The causes of “We can’t change that!”

6:35-6:55 Known solutions for certain types of usability changes

6:55-7:15 Usability & Software Architecture Approach (U&SA)

7:15-7:45 BREAK

7:45-8:10 Example: Canceling commands

8:10-8:25 Example: Reusing information

8:25-8:40 Example: Supporting international use

8:40-8:55 Example: Observing system state

8:55-9:20 U&SA in analysis and design

9:20-9:30 Wrap-up

CHI 2003

ii John & Bass

Instructor Biographies

Bonnie John is an engineer (B.Engr., The Cooper Union, 1977; M. Engr.
Stanford, 1978) and cognitive psychologist (M.S. Carnegie Mellon, 1984;
Ph. D. Carnegie Mellon, 1988) who has worked both in industry (Bell
Laboratories, 1977-1983) and academe (Carnegie Mellon University, 1988-
present). She is an Associate Professor in the Human-Computer Interaction
Institute and the Director of the Masters Program in HCI. Her research
includes human performance modeling, usability evaluation methods, and
the relationship between usability and software architecture. She consults for
many industrial and government organizations.

Len Bass is an expert in software architecture & architecture design
methods. Author of six books including two textbooks on software
architecture & Ul development, Len consults on large-scale software
projects in his role as Senior MTS on the Architecture Trade-off Analysis
Initiative at the Software Engineering Institute. His research area is the
achievement of various software quality attributes through software
architecture and he is the developer of software architecture analysis and
design methods. Len is also the past chair of the International Federation of
Information Processing Working Group on User Interface Engineering.

CHI 2003 iii John & Bass

Objectives of the course

Participants in this tutorial will

* Understand basic principles of software architecture for interactive
systems and its relationship to the usability of that system

* Be able to evaluate whether common usability scenarios will arise in
the systems they are developing and what implications these usability
scenarios have for software architecture design

* Understand patterns of software architecture that facilitate usability,
and recognize architectural decisions that preclude usability of the
end-product, so that they can effectively bring usability considerations
into early architectural design.

CHI 2003 iv John & Bass

Abstract

The usability analyses or user test data are in; the development team is
poised to respond. The software had been carefully modularized so that
modifications to the Ul would be fast and easy. When the usability problems
are presented, someone around the table exclaims, “Oh, no, we can’t change
THAT!” The requested modification or feature reaches too far in to the
architecture of the system to allow economically viable and timely changes
to be made. Even when the functionality is right, even when the Ul is
separated from that functionality, architectural decisions made early in
development have precluded the implementation of a usable system. The
members of the design team are frustrated and disappointed that despite their
best efforts, despite following current best practice, they must ship a product
that is far less useable than they know it could be.

This scenario need not be played out if usability concerns are considered
during the earliest design decisions of a system, that is, during the
architectural design, just as concerns for performance, availability, security,
modifiability, and other quality attributes are considered. The relationships
between these attributes and architectural decisions are relatively well
understood and taught routinely in software architecture courses. However,
the prevailing wisdom in the last 20 years has been that usability had no
architectural role except through modifiability; design the Ul to be easily
modified and usability will be realized through iterative design, analysis and
testing. Separation of the user interface has been quite effective, and is
commonly used in practice, but it has problems. First, there are many aspects
of usability that require architectural support other than separation, and,
second, the later changes are made to the system, the more expensive they
are to achieve. Forcing usability to be achieved through modification means
that time and budget pressures are likely to cut off iterations on the user
interface and result in a system that is not as usable as possible.

Recent developments made jointly by this tutorial’s instructors at the
Software Engineering and Human-Computer Interaction Institutes at
Carnegie Mellon University have established the relationship between
architectural decisions and usability. This tutorial will teach this relationship.
It will give usability specialists and software developers alike an explicit link
between their two realms of expertise, allowing both to participate more
effectively in the early design decisions of an interactive system. It will give
the entire design team the tools to consider usability from the very earliest
stages of design, and allow informed architectural decisions that do no
preclude usability.

CHI 2003 v John & Bass

CarnegieMellon

The scene

The usability analyses or user test data are in; the
development team is poised to respond. The software had
been carefully modularized so that modifications to the Ul
would be fast and easy. When the usability problems are
presented, a developer around the table exclaims, “Oh, no,
we can’t change THAT!”

CHI 2003 2 John & Bass

CarnegieMellon

The scene

The usability analyses or user test data are in; the
development team is poised to respond. The software had
been carefully modularized so that modifications to the Ul
would be fast and easy. When the usability problems are
presented, a developer around the table exclaims, “Oh, no,
we can’t change THAT!”

The requested modification, feature, functionality, reaches
too far in to the architecture of the system to allow
economically viable and timely changes to be made.

* Even when the functionality is right,

* Even when the Ul is separated from that functionality,

» Architectural decisions made early in development can
preclude the implementation of a usable system.

CHI 2003 3 John & Bass

CarnegieMellon

Outline of tutorial

Analyze the causes of the “We can’t change THAT” problem

Discuss known solutions for certain classes of usability changes
and why they don’t work for everything.

Usability & Software Architecture (U&SA)
» General usability scenarios with architectural impact
* Architectural patterns and tactics to support usability

Applying U&SA to architecture evaluation and design

CHI 2003 4 John & Bass

—

What leads to “We can’t change THAT!”?
So what is the cause?

This is the realm of
“We can’t change THAT!”

e

_ Needs discovered during
- iterative development. '

~

N

. 4

© 2003 by Carnegie Mellon University CHI 2003 Tutorial - John & Bass - page 9

CHI 2003 9 John & Bass

CarnegieMellon

What is software architecture?

Software architecture is the high-level structural design
* Enumeration of all major modules
* Enumeration of responsibilities for each module
* Interaction among modules specified
- Control and data flow
- Sequencing information
- Protocols of interaction
- Allocation to hardware

Software architecture is the first system artifact that can be
analyzed with respect to the quality attributes important to
the particular system

CHI 2003

12

John & Bass

CarnegieMellon

U&SA'’s Strategy — 2

Identify those aspects of usability that are “architecturally
sensitive” and embody them in small scenarios

Provide checklist of important software responsibilities,
software tactics, and possible architecture patterns to
satisfy these scenarios

Integrate architecturally sensitive aspects of usability into
software architecture evaluation methods (e.g., ATAMSM)

Use architecture patterns within software architecture
generation methods (e.g., ADD)

Short descriptions of the Attribute Tradeoff Analysis MethodS™ (ATAMSM) and
Attribute-Driven Design (ADD) can be found in Bass, L.; Clements, P. & Kazman, R.
(2003). Software Architecture in Practice, 2nd edition. Reading, MA: Addison Wesley
Longman.

CHI 2003 35 John & Bass

CarnegieMellon

What does architecturally-
sensitive mean?

A scenario is architecturally-sensitive if it is difficult to support by
patterns that only separate the user interface from the application.

Solution may:
* Require that multiple modules interact in particular ways
* Require that related information and actions be placed in a
single module and therefore can be easily changed

Consider the previously mentioned examples in J2EE/MVC:
» Changing color of font modifies only View
- NOT architecturally-sensitive
» Changing color of font modifies only Controller
- NOT architecturally-sensitive
» Adding a cancel command modifies all modules
- IS architecturally-sensitive

CHI 2003 36 John & Bass

CarnegieMellon

Architecturally-sensitive usability
scenarios

Focussed on both end users and developers

Each usability scenario is a short description of an
interaction with a system.

Initially focused on single user at a desktop, but have also
proven useful in co-located collaborative environments.

Currently 27 scenarios (see Appendix |), e.g.,
+ cancellation
+ information reuse (not having to enter same information
multiple times)
* observing system state

CHI 2003 37 John & Bass

CarnegieMellon

Elements of an architecturally-
sensitive usability scenario
package

General usability scenario
Usability benefits to the user

Checklist of responsibilities to allocate at architecture
design time

Example architectural pattern based on J2EE/MVC
» Software tactics to implement the pattern

CHI 2003 38 John & Bass

CarnegieMellon

Usability benefits hierarchy

Increases individual user effectiveness
» Expedites routine performance
- Accelerates error-free portion of routine performance
- Reduces the impact of routine user errors (slips)
 Improves non-routine performance
- Supports problem-solving
- Facilitates learning
* Reduces the impact of user errors caused by lack of
knowledge (mistakes)
- Prevents mistakes
- Accommodates mistakes

Reduces the impact of system errors
* Prevents system errors
* Tolerates system errors

Increases user confidence and comfort

CHI 2003 39 John & Bass

CarnegieMellon

hierarchy

Localize modifications
+ Hide information
» Separate data from commands
» Separate data from the view of
that data

Maintain multiple copies
* Data
* Commands

Use an intermediary
* Data
* Function

» Separate authoring from execution

Software architecture tactics

Recording

Preemptive scheduling
policy

Support system
initiative

» Task model

» User model

» System model

CHI 2003

40

John & Bass

CarnegieMellon

Examples of using general
scenario packages

Demonstrate how to use scenario packages
» Canceling commands
* Reusing information
» Supporting international use
* Observing system state

CHI 2003 41 John & Bass

CarnegieMellon

Applying the scenarios

Scenarios should be used as a checklist during the requirements
process.

Scenarios are revisited during the design process to make sure
they are supported by the architecture.

Scenarios act as a checklist for developers to ensure they are
implemented in the source code.

Scenarios should be re-checked during any modification effort

Scenarios can also come into procurement decisions, for
example, supporting international use may require purchasing a
database that supports double-byte characters for storing text
with non-roman lettering.

CHI 2003 94 John & Bass

CarnegieMellon

U&SA applied to the NASA
MERBoard

The Mars Exploration Rover Board (MERBoard) is a
collaborative workspace to aid engineers and scientists
analyze data and plan the work of the Mars Exploration Rover

Rover acts as a remote field geologiston Mars

Pictures from the IBM website
http://www.research.ibm.com/resources/news/20020603_merboard.shtml

CHI 2003 95 John & Bass

CarnegieMellon

Applicability of the scenarios

Design & development team found 25 of 27 scenarios to be
applicable to their project

17 of the 25 applicable scenarios needed by the next field
trial; 8 were for the longer term

Easy for the development team to give concrete examples
of these scenarios for their users, often from direct
observation during the field trials

CHI 2003 99 John & Bass

CarnegieMellon

Summary of applying the U&SA
approach to MERBoard

Scenarios were well received by the developers, readily
understood how they fit (or didn’t) to their system

Scenarios DID apply to collaborative workspace
* We don’t know if there will be collaborative-specific
scenarios yet

Scenarios HAD an impact on the architecture redesign

Process did not seem too onerous

CHI 2003 102 John & Bass

CarnegieMellon
B f. tl I t i M t i
Usability —Yp Increases individual effectiveness Reduces impact of system | Increases
Benefits confidence
and comfort
Expedites routine p Improves n Reduces impact of mistakes
performance
rchitectural Accelerates Reduces Supports Facilitates Prevents Accommo- Tolerates Prevents
Tactics error-free | impact of slips| problem- learning mistakes |dates mistakes| system errors | system errors
portion solving
Tocalze Fide mformation
Modifications bRy iy 1 4,13,20 4,13,20 4,13,20 9,14 23
Separate data
from the view of 12,13,24,25 12 12, ;:;' 2226‘ 24, 12,13,24 12,13,22, 24 12 12
that data .
Separate data
from commands 1,24,25 5,17 572425 | 547,24 | 1,5,17.24 1,5,17 17
Separate authoring|
from execution 1,2 2 1,2
Maintam muliple Data
copies 16
Commands
2 2 22 2
TUse an Data
intermediary 711,14 1 7.1 14
Function
6, 14, 20, 27 27 6,20 20 20, 27 14 6 27
Recording
2,7 2,321 3,7,21 2,3,21 3.8
Preemplive scheduling policy
15,18, 19 3,5,17,18 3,5,10,17 5,10,17 5,17,19 3,5,17 3 17,18
Support system _Task model
initiative 18,19 5,17,18 5,10, 17 5,10, 17 5,17,19 5,17 17,18
User model
12,18 5,12,17,18 5'10'2122’17’ 5,10,12,17 | 5,12,17,22 5,12,17 12,17, 18
System model
4,6,19,23 | 3,517 |345617 | 4517 | 451719 | 3517 3 6,23 17

Aggregating data

Aggregating commands
Canceling commands

Using applications concurrently
Checking for correctness
Maintaining device independence
Evaluating the system

Recovering from failure

R A O o A

Retrieving forgotten passwords

,_
e

Providing good help

—_—
—

Reusing information

,_
N

Supporting international use

—
98]

Leveraging human knowledge

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

Modifying interfaces

Supporting multiple activity
Navigating within a single view
Observing system state

Working at the user’s pace
Predicting task duration

Supporting comprehensive searching
Supporting undo

Working in an unfamiliar context
Verifying resources

Operating consistently across views
Making views accessible
Supporting visualization

Supporting personalization

A larger version of this matrix appears in Appendix IV.

CHI 2003

106

John & Bass

