

© 2003 Constantine & Lockwood, Ltd.

CHI 2003 Tutorial

Card-Based User and Task Modeling
for Agile Usage-Centered Design

Larry Constantine

University of Technology, Sydney
(Australia)

Constantine & Lockwood, Ltd.
58 Kathleen Circle
Rowley, MA 01969

lconstantine@foruse.com

Lucy Lockwood
Constantine & Lockwood, Ltd.

58 Kathleen Circle
Rowley, MA 01969

llockwood@foruse.com

CHI 2003 - i - Larry Constantine | Lucy Lockwood

Table of Contents

Instructors ii

Agenda iii

Objectives iv

Overview v

Notes 1

Templates 23

Readings
Constantine, Lockwood: Usage-Centered Web Engineering 25

 Constantine: Modeling Shortcuts 40

 Patton: Designing Requirements 46

 Constantine: Process Agility 58

Resources 68

Constantine & Lockwood, Ltd.

CHI 2003 - ii - Larry Constantine | Lucy Lockwood

Instructor Biographies

Larry Constantine, Adjunct Professor, Information Technology, University of
Technology, Sydney (Australia) and Director of Research and Development,
Constantine & Lockwood, Ltd., is a pioneer in software engineering who is recognized
for original contributions forming the foundations of modern design and development
practice . His current interests focus on enhancing software usability through model-
driven and usage-centered design methods. In a career spanning four decades, he has
had over 150 papers published plus 16 books, including the 1999 Jolt Award winner,
Software for Use (Addison-Wesley). An award-winning designer (Performance-Centered
Design Competition 2001) as well as a respected teacher, he has taught in 17 countries
around the world.

Lucy Lockwood, President, Constantine & Lockwood, Ltd., is an internationally
respected consultant and trainer who draws on nearly 20 years experience in
programming and project management. Her practice centers on software usability and
technical teamwork, and she has contributed many of the core concepts and
techniques in usage-centered design. A top-rated speaker, she has taught around the
world and has keynoted major conferences. She is author of more than a dozen
published papers and co-author of the award-winning book, Software for Use (Addison-
Wesley, 1999).

CHI 2003 - v - Larry Constantine | Lucy Lockwood

Overview

User and task modeling are essential parts of the toolkit of most usability and design
professionals and core components of nearly all systematic design approaches. User
and task models help professionals to capture, explore, analyze, elaborate, and
validate their understanding of users and the tasks they need to perform.

While thorough ethnographic inquiry, deep and refined analysis, and complete and
detailed modeling are regarded as the ideal in HCI work, in practice, many
professionals do not have luxury of leisurely investigation and exploration. Under
current conditions of ever-shortening design and delivery lifecycles, many traditional
techniques are proving too costly or cumbersome. Rather than omitting systematic
analysis and modeling altogether, professionals need simplified techniques that
quickly provide concise, focused, and trustworthy guidance. This need is especially
acute for rapid deployment of software and Web-based applications and services
developed with the emerging "agile" methods.

User and task models take many different forms and can be constructed in a variety of
media. This tutorial focuses on approaches that exploit the inherent flexibility and
conceptual power of ordinary index cards supplemented with other low-tech media.
These extremely fast and simple card-based modeling techniques form the core of
agile usage-centered design, a proven design approach to complement the increasingly
popular agile methods, such as eXtreme Programming (XP), that have demonstrated
their ability to speed development and delivery of software and Web-based products.
In agile usage-centered design, the focus is on minimalist models that provide
maximum payoff for improved designs.

A variety of techniques will be explained and applied, including card storming, role
and task inventories, abstract dialogs, role-support analysis, and cooperation
clustering of task cases. In addition to the core models of user roles and task cases,
closely related modeling approaches will be addressed, including personas, user
profiles, scenarios, user and customer stories.

Covered Topics

n Usage-centered and user-centered design
n Overview of a model-driven design process
n Relationships among role, task, and content models
n Model-driven derivation of visual and interaction designs
n Iterative agile processes and design-release cycles:

XP, agile modeling, and others

CHI 2003 - vi - Larry Constantine | Lucy Lockwood

n Usage-centered, model-based exploration

n Beyond paper prototypes: traditional and novel low-tech tools
n Managing chaos with holding bins
n Card-based modeling: cognitive and pragmatic advantages
n Basic techniques:

card-storming, affinity clustering, prioritizing, coordination clustering and
other specialized categorizations

n Users, actors, user roles, personas, and user profiles
n Concise and efficient modeling based on relationships
n Generating a user role inventory
n Ranking user roles by commonality and priority
n Refining user role models through affinity clustering and role elaboration
n Role-support analysis

n Tasks, use cases, scenarios, and stories
n Writing abstract dialogs
n Elaborating task models:

workflow, preconditions, extensions, inclusions, rules and constraints
n Ranking techniques for card-based task models
n Combining and comparing alternative rankings
n Affinity clustering and task model refinement

n Bridging the gap from task models to design
n Cooperation clustering of tasks into interaction contexts
n Card-based models as drivers of design, planning, and scheduling
n Content inventories and abstract prototypes
n Deriving visual and interaction designs from card-based models

Card-Based Modeling for Usage-Centered Design

CHI 2003 - 1 - Larry Constantine | Lucy Lockwood

3

Constantine & Lockwood, Ltd.

Agile Development

Systematic but streamlined (“lightweight”) methods.
Iterative, incremental evolution; short release cycles.
Best known: eXtreme Programming, Crystal, SCRUM,
Feature-Driven Development, Agile Modeling.*
Project management and project organization:

no overtime
paired programming

Detect and eliminate defects early.
Coordinate and collaborate with customers
but not (usually) users.
Deliver capability but not usability.

customer access
cross-training, rotation, fungibility

Pressure to deliver more for less in less time generated
revolution in software development methods.

* See references.

4

Constantine & Lockwood, Ltd.

Rapidity Revolution

In effort to avoid “analysis paralysis,” thoughtful,
thorough design is rejected. No BDUF!
Users can be shortchanged in “customer-centric” focus
on features, delivered value, customer satisfaction.

“GUI-intensive projects are problematical for XP (and
probably for many approaches).” —Ron Jeffries
“It is not a ‘weak point’ [of the agile methods], it is
an absence.” —Alistair Cockburn

What can usability-oriented design professionals do
under extreme programming pressure?

simplified architectural overview
minimalist modeling
concurrent, concentric design and development

5

Constantine & Lockwood, Ltd.

Card-Based Modeling

Usage-Centered and User-Centered Design
Beyond Paper Prototypes
Users, Actors, Roles, Personas, and Profiles
Tasks, Use Cases, Scenarios, and Stories
From Task Models to Design

Card-Based Modeling for Usage-Centered Design

CHI 2003 - 2 - Larry Constantine | Lucy Lockwood

6

Constantine & Lockwood, Ltd.

Users or Usage

Focus is on usage - task
performance, task support
Driven by task models
Selective user involvement

Exploratory modeling
Model validation
Usability inspections

Design by modeling
Systematic process
Getting it right by design

Focus is on users - user
satisfaction, user experience
Driven by user input
Substantial user involvement

User studies
User feedback
User testing

Design by prototyping
Variable, informal processes
Trial-and-error

UserUser--Centered DesignCentered Design UsageUsage--Centered DesignCentered Design

Objective: simpler systems completely supporting
efficient task performance and realization of user
intentions. NeverNever, “user friendly.”

7

Constantine & Lockwood, Ltd.

Designing for Use

To design for use, you have to understand three things -

Your users.

What roles do they play in
relation to the system?

Their work.

What tasks are they
trying to accomplish in
those roles?

Their needs.

What tools and materials
are needed for the tasks?

Simple, abstract models can build and hold understanding.

8

Constantine & Lockwood, Ltd.

Abstract Advantages

Why abstract models?
Simplified forms quickly generated.
Defer details to focus on big picture, main issues.
Invite investigation and innovation.
Allow confident assertions in the absence of
extensive research or real data…

Which is the more common watch user?
middle-aged male runners or scuba divers?
time-zone-tripping-techno-nerds
or casual-clock-checkers?

Abstraction can
speed realization!

Card-Based Modeling for Usage-Centered Design

CHI 2003 - 3 - Larry Constantine | Lucy Lockwood

9

Constantine & Lockwood, Ltd.

Usage-Centered Modeling
Begins with understanding of the rolesroles users play in
relation to the system being designed.

ROLES TASKS CONTENTS DESIGN

1. Asdhf asdf
2. Wertw rt bzc
3. Ouiaa ero

Step2Step1

Behavior

Identifies taskstasks (task cases) needed to support user roles.
Clusters tasks by use and meaning.
Defines intentions and responsibilities for each task.
Models page contentscontents needed to support task clusters.
Derives complete visual and interaction designs.

10

Constantine & Lockwood, Ltd.

What Makes it Fast

Abstraction simplifies and tightens focus.
Models shape and speed inquiry, quickly organize
complex information.
Designs derive from models not magic.
Overview for planning and prioritizing easily drafted.
Focuses on user intentions and genuine needs, not
wants, wishes, and feature fantasies.

Agile usage-centered design -
Model-driven iterative cycles.
Sharply focused minimalist models -
only what is most basic and really important.
Simplified card-based modeling techniques.
Holding bins keep order in rapidly evolving process.

11

Constantine & Lockwood, Ltd.

Project
Navigator

CPU control

View Set
(collection of task-related
views/contexts selected
by Project Navigator)

Open-view navigator bar

Tools
(auto

slide-out
as

needed)

Scheme and Architecture

Navigation architectureNavigation architecture - how UI is organized into
interaction contexts, collections, or groups; how these are
presented to users; how users navigate among these.
Visual and interaction schemeVisual and interaction scheme - “abstract style guide,”
common layout templates,
basic visual elements, etc.
Consider IDE for
automation apps
PLC programming.

2-mode “Explorer-like” specialized
tree-view (double-click to open set)

Auto/manual
slide-out
panels

Built-in “task bar”

For rapid iterative or XP-style design and development –
Not BDUF, but draft of overall UI design in advance to
know where everything is and how it fits together.

Tab access to
views in set

Card-Based Modeling for Usage-Centered Design

CHI 2003 - 11 - Larry Constantine | Lucy Lockwood

33

Constantine & Lockwood, Ltd.

Card-Based Modeling

Usage-Centered and User-Centered Design
Beyond Paper Prototypes
Users, Actors, Roles, Personas, and Profiles
Tasks, Use Cases, Scenarios, and Stories
From Task Models to Design

34

Constantine & Lockwood, Ltd.

CONCEPTUAL,
CATEGORICAL
Like writing a paper!

Task Modeling Views

Work as sequential steps:
flowcharts
work flow models
data flow diagrams

Work as hierarchy of tasks:
functional decomposition

Sequential, hierarchical, & narrative views can be combined.

Work as narrative:
scenarios
storyboards

RICH, REALISTIC
Like writing a script!

DETAILED, CONCRETE
Like writing code!

the indredible ioi
asdsadf sdoasof
sadofasdf sdio r rei idf
df99r sfdj sdf sdfg
sd9f dfg0sdf sdf9g
sdfg9 sdfg dsf0s0dfg
sdfg sdfus df0gsdfg
sdfgusdfg sdfg u0sdf
sdf0gsdfg sdfg sdf
sdfgu0909 s f0990
totally!

Once upon a dark and
stormy night as I fgh
rewnen sdfuiosdf dfgu
sdfuosdf dfisdf
sdfisdfu ser09t s9df
fds9gsersdjsjdfg9sd
dsfg d9fg0sdf r900
sr09sdf0gsdf0g
sdf0sd0fg s9d90! I
could not basdunc

(Preferred by programmer-types.)

(Favorite of academics/researchers.) goal hierarchy
work breakdown

(In with artsy folks.)

35

Constantine & Lockwood, Ltd.

Task Cases
Task case:* a use case (one case of use) in essential
form, that is, abstract, simplified, and technology
and implementation independent.

doing it all

* also called “essential use case”

A single, discrete intention that is complete, well-
defined, and meaningful to a user, in some role.
Not a complete job, story, or scenario.
For example: reviewing product annual sales,
entering special symbol into document,
or checking liability insurance claim status

But not “unsuitably vague”: coordinating events,
processing claims, or using information kiosk
Named with a continuing action (“ing-word”)
and a fully qualified object.

Card-Based Modeling for Usage-Centered Design

CHI 2003 - 12 - Larry Constantine | Lucy Lockwood

36

Constantine & Lockwood, Ltd.

Why Task Cases

Task cases model the “what” and “why” of use
rather than the “how.”
Task cases

are simplified and abstract.
are closer to the essence of work.
encourage innovative solutions.
represent user intentions rather than actions.
are fine grained.
are readily reorganized and re-used.

But, rich, realistic scenarios that tell a plausible
story can seem more familiar and more fun.

doing it allhaving it all

37

Constantine & Lockwood, Ltd.

The use case begins when the client inserts an ATM card. The system reads and
validates the information on the card.

1. System prompts for PIN. The client enters PIN. The system validates the PIN.
2. System asks which operation the client wishes to perform. Client selects “Cash withdrawal.”
3. System requests amounts [sic]. Client enters amount.
4. System requests type. Client selects account type (checking, savings, credit).
5. The system communicates with the ATM network to validate

account ID, PIN, and availability of the amount requested.
6. The system asks the client whether he or she wants a receipt.

This step is performed only if there is paper left to print the receipt.
7. System asks the client to withdraw the card. Client withdraws card.

(This is a security measure to ensure that Clients
do not leave their cards in the machine.)

8. System dispenses the requested amount
of cash.

9. System prints receipt.
10.The use case ends.

The use case begins when the client inserts an ATM card. The system reads and
validates the information on the card.

1. System prompts for PIN. The client enters PIN. The system validates the PIN.
2. System asks which operation the client wishes to perform. Client selects “Cash withdrawal.”
3. System requests amounts [sic]. Client enters amount.
4. System requests type. Client selects account type (checking, savings, credit).
5. The system communicates with the ATM network to validate

account ID, PIN, and availability of the amount requested.
6. The system asks the client whether he or she wants a receipt.

This step is performed only if there is paper left to print the receipt.
7. System asks the client to withdraw the card. Client withdraws card.

(This is a security measure to ensure that Clients
do not leave their cards in the machine.)

8. System dispenses the requested amount
of cash.

9. System prints receipt.
10.The use case ends.
user system internals user interface

The use case begins when the client inserts an ATM card. The system reads and
validates the information on the card.

1. System prompts for PIN. The client enters PIN. The system validates the PIN.
2. System asks which operation the client wishes to perform. Client selects “Cash withdrawal.”
3. System requests amounts [sic]. Client enters amount.
4. System requests type. Client selects account type (checking, savings, credit).
5. The system communicates with the ATM network to validate

account ID, PIN, and availability of the amount requested.
6. The system asks the client whether he or she wants a receipt.

This step is performed only if there is paper left to print the receipt.
7. System asks the client to withdraw the card. Client withdraws card.

(This is a security measure to ensure that Clients
do not leave their cards in the machine.)

8. System dispenses the requested amount
of cash.

9. System prints receipt.
10.The use case ends.
user system internals user interface

* Kruchten, 1999

Use Case Unified-Style

7 user steps.
(But no money!)

1. Cluttered with noise words.

2. Mixes user and system issues.

3. Unnecessary assumptions about

eventual user interface design.

4. Mixes internal/external require-

ments, design, and technology.

5. All about the system.

Withdraw Money*

38

Constantine & Lockwood, Ltd.

USER INTENTIONS SYSTEM RESPONSIBILITIES

Defined by a structured narrative in language of the
users and the application domain.
An abstract dialog described in two columns:*

* Rebecca Wirfs-Brock

Concise, simplified, abstraction encourages innovation.
Can be elaborated into precise, comprehensive model.
Easy for users/clients to understand, confirm, amplify;
no notation to learn.

Task Cases—Basic Form

getting cash from my ATM account

1. request identification
2. identify myself

3. verify identification

5. choose
6. give cash

7. take the cash

ex
te
rn
al

re
qu
ire

me
nt
s

internal

requirements
user

interface

Simplify
and

generalize!

4. offer choices
WHY?

WHY?

Card-Based Modeling for Usage-Centered Design

CHI 2003 - 13 - Larry Constantine | Lucy Lockwood

39

Constantine & Lockwood, Ltd.

An ATM Scenario

Wanda Cashnow is out shopping and realizes she is short on cash.
She spots a BankIT ATM. She inserts her card and enters her PIN
when asked. Offered the choice of 4 set amounts, she selects
$300. The ATM reports “Transaction Denied” and returns the
card. She starts over but chooses “Other Amount,” then enters
150 and is told “Multiples of $20 only.” She enters 160, then
presses OK when asked if she wants a receipt. When money and
receipt are dispensed, she notes a low balance. She presses OK
when asked if she wants another transaction, then selects
“Balance Transfer.” Changing her mind, she keeps pressing
“Cancel” until the system beeps and asks if she is done. She
presses OK and walks away. A repeated tritone from the
ATM draws her attention, and she sees “Please take card!”
on the screen. She grabs the card and sighs in relief. BankIT

40

Constantine & Lockwood, Ltd.

Scenarios: the Good and the Bad

Plausible extended vignette
comprising multiple task elements.
Easily constructed from simple
observation or minimal analysis.
Rich and realistic, appealing to designers and users.
Effective for usability inspections, usability testing,
communication with users and clients.
Coarse grained model muddles distinct tasks.
Rarely feasible to model entire task domain.
Superfluous details distract from essentials.
Exceptional, uncommon, or unimportant actions
can assume undue prominence in story line.
Concreteness does not facilitate innovative thinking.

41

Constantine & Lockwood, Ltd.

User Stories

XP (and some other agile methods) employ “user
stories” to identify and define features and
functions as input to planning process.
User stories are concrete, quasi-realistic scenarios,
plausible accounts of use of the proposed system.
Concise, testable, free of implementation specifics.
They are called user stories, but they are written by
the customer (or person in “customer role”).

Clients and customers are not the same as users.
Users actually use the system.
Users outnumber customers.
If you meet the real user needs,
you meet the customer needs.

Once upon a dark
and stormy night…

C
on

st
an

tin
e

&
 L

oc
kw

oo
d,

 L
td

.
©

 20
02

C
on

st
an

tin
e

&
 L

oc
kw

oo
d,

 L
td

.
©

20
02

C
on

st
an

tin
e

&
 L

oc
kw

oo
d,

 L
td

.

R
__

 -

R
__

 -
R

__
 –

©
 20

02
C

on
st

an
tin

e
&

 L
oc

kw
oo

d,
 L

td
.

©
20

02

R
__

 -
CO

NT
EX

T:

CH
AR

AC
TE

RI
ST

IC
S:

CR
IT

ER
IA

:

CO
NT

EX
T:

CH
AR

AC
TE

RI
ST

IC
S:

CR
IT

ER
IA

:

CO
NT

EX
T:

CH
AR

AC
TE

RI
ST

IC
S:

CR
IT

ER
IA

:

CO
NT

EX
T:

CH
AR

AC
TE

RI
ST

IC
S:

CR
IT

ER
IA

:

C
on

st
an

tin
e

&
 L

oc
kw

oo
d,

 L
td

.
©

 20
02

C
on

st
an

tin
e

&
 L

oc
kw

oo
d,

 L
td

.
©

20
02

C
on

st
an

tin
e

&
 L

oc
kw

oo
d,

 L
td

.

R
__

 -
R

__
 -

R
__

 -
R

__
 -

R
__

 –
R

__
 –

©
 20

02
C

on
st

an
tin

e
&

 L
oc

kw
oo

d,
 L

td
.

©
20

02

R
__

 -
R

__
 -

CO
NT

EX
T:

CH
AR

AC
TE

RI
ST

IC
S:

CR
IT

ER
IA

:

CO
NT

EX
T:

CH
AR

AC
TE

RI
ST

IC
S:

CR
IT

ER
IA

:

CO
NT

EX
T:

CH
AR

AC
TE

RI
ST

IC
S:

CR
IT

ER
IA

:

CO
NT

EX
T:

CH
AR

AC
TE

RI
ST

IC
S:

CR
IT

ER
IA

:

CO
NT

EX
T:

CH
AR

AC
TE

RI
ST

IC
S:

CR
IT

ER
IA

:

CO
NT

EX
T:

CH
AR

AC
TE

RI
ST

IC
S:

CR
IT

ER
IA

:

CO
NT

EX
T:

CH
AR

AC
TE

RI
ST

IC
S:

CR
IT

ER
IA

:

CO
NT

EX
T:

CH
AR

AC
TE

RI
ST

IC
S:

CR
IT

ER
IA

:

C
on

st
an

tin
e

&
 L

oc
kw

oo
d,

 L
td

.
©

20
02

T
__

 -

C
on

st
an

tin
e

&
 L

oc
kw

oo
d,

 L
td

.
©

 20
02

T
__

 -

C
on

st
an

tin
e

&
 L

oc
kw

oo
d,

 L
td

.
©

 20
02

T
__

 -

C
on

st
an

tin
e

&
 L

oc
kw

oo
d,

 L
td

.
©

20
02

T
__

 -

C
on

st
an

tin
e

&
 L

oc
kw

oo
d,

 L
td

.
©

20
02

T
__

 -

C
on

st
an

tin
e

&
 L

oc
kw

oo
d,

 L
td

.
©

 20
02

T
__

 -

C
on

st
an

tin
e

&
 L

oc
kw

oo
d,

 L
td

.
©

 20
02

T
__

 -

C
on

st
an

tin
e

&
 L

oc
kw

oo
d,

 L
td

.
©

20
02

T
__

 -

Original of a column in The Management Forum, Software Development, February 2000.
Reprinted in L. Constantine, ed., Beyond Chaos: The Expert Edge in Managing Software
Development (Addison-Wesley, Boston, 2001). The author may be contacted at Constantine &
Lockwood, Ltd., 58 Kathleen Circle, Rowley, MA 01969; tel: 1 (978) 948 5012; fax: 1 (978) 948
5036; email: larry@foruse.com | www.foruse.com © 1999, L. L. Constantine

CHI 2003 - 40 - Larry Constantine | Lucy Lockwood

Experience Report

Cutting Corners:
Shortcuts in Model-Driven Web Design

Larry Constantine
Director of Research & Development

Constantine & Lockwood, Ltd.

Abstract: Model-driven design under the pressure of Web-time
development and impossible deadlines may require taking shortcuts,
especially in which design models are developed and how. This reprint of a
column describes the approach to usage-centered design taken in one
crunch-mode project for a Web-deployed classroom information system.
Continual access to domain experts and speed modeling with index cards
are among the techniques that helped.

Keywords: crunch mode, Web time, agile methods, lightweight methods,
usage-centered design, Web applications, model-driven design, just-in-
time requirements, card-based modeling

Readers of this column do not have to be reminded of the benefits of working
systematically. I have long been known as an advocate of systematic, model-driven
design and development and have many times argued, in this Forum and elsewhere ,
that the greater the time pressure in software development, the greater is the need for
thoughtful and thorough modeling. Such advice is, of course, far easier to give than to
follow.

I recently completed with Lucy Lockwood one of those crunch-mode projects that tests
the mettle of all involved. We were asked to design the user interface for a complex
new web-based classroom application, defined by ambitious but profoundly vague
requirements and being developed on a sanity-free delivery schedule that left no time
for analysis, design, thinking, or sleep.

Seduced by the challenge and the opportunities to break new ground in supporting
classroom teaching, we plunged in, determined to deliver a world-class design but fully
realizing that there was not enough time to do the kind of thoughtful and
comprehensive design models on which we have built our reputations. Had we known
the full scope of the project and the void of the analysis before we signed on, we might

Constantine & Lockwood, Ltd.

CHI 2003 - 41 - Larry Constantine | Lucy Lockwood

not have done it, but then we would have missed out on a lot of fun and would not
have learned some new lessons in corner cutting.

We have long argued that projects of differing size and developed on various time
scales require different development processes. One -size-fits-all, “unified” methods are
likely to fail on one end of the spectrum or the other. Large-scale projects may require
elaborate models, meticulous record keeping, repeated validation and auditing, and
careful tracing of information, while smaller, accelerated projects may need
streamlined, low-overhead approaches. Web-based projects, in particular, may require
stripped-down, speeded-up methods to keep pace with the demands of the rapidly
evolving Internet world. [See Dave Thomas, “Web-Time Development,” this column,
October 1998.]

Everyone who has worked on one of those exciting, sleep-depriving, mission-
impossible projects has felt the need to cut corners, but how far do you go? When does
paring down on process leave only a bare -boned skeleton inadequate to support the
needs of the project?

As the late Robert Heinlein so aptly expressed it in the classic novel, The Moon is
Harsh Mistress, there ain’t no such thing as a free lunch. Taking a shortcut always
exacts a cost. Shortcutting a proven process means omitting or short-changing some
productive activities, and the piper will be paid, if not now, then later.

The trick is to pick the tune and the price to pay the piper. Some shortcuts save time,
while others can lead into swamplands, where backtracking can be far more costly
than sticking to the straight and narrow of proper analysis and design.

Model Still
Despite pressure to deliver designs, we decided at the outset not to abandon
completely the modeling we knew would help us deliver a better product. Instead, we
would simplify both the models and the modeling.

Most modern software engineering, and certainly nearly all disciplined development, is
model-driven to some degree. In our work as user interface designers, we use three
simple models to help us understand the needs of users and fit the design to those
needs. We model user roles, user tasks, and user interface contents. Associated with
each of these models is a map: a role map captures the relationships among user roles,
a use case map represents relationships among supported tasks, and a content
navigation map represents how all the pieces of the user interface fit together. You
may use more or fewer models in your work, but the odds are you use some kind of
models.

Required Requirements
As the user roles for this application appeared to be neither many nor highly varied,
we radically shortened the front-end modeling by constructing only a somewhat vague
and admittedly inaccurate model of user roles. We were engaging in a sort of studied
sloppiness, for which we knew there would be a cost, but we had little alternative. We
gathered just enough information to get a good feel for the users and their ways of

CHI 2003 - 42 - Larry Constantine | Lucy Lockwood

working, then moved on to other matters. We never constructed a complete map of all
the user roles and how they fit together.

In retrospect, this was an expensive compromise but worth the price. The heart of the
matter is understanding the tasks of the users. A good user role model is a bridge to
good task models and can speed up the identification of use cases in the task model,
but under such tight time constraints, we concluded the payoff was not quite worth
the price. Had we filled in all the blanks and crossed every tee in the role model, we
might have had fewer false starts and moments of panic, but we would still not have a
design.

Our advice would be to look at what models in your process serve primarily as bridges
to other models rather than driving design directly. Consider cutting corners there and
saving your resources for more critical steps.

Just in Case
Use cases are ubiquitous in software development today, and one particular form—
essential use cases—plays a pivotal role in our work. Essential use cases represent the
minimal core of capability that the user interface must provide to users, thus they not
only capture basic functional requirements but also help structure the user interface
around the core tasks.

Those of you familiar with use cases know there are two pieces to the use case puzzle.
You have to be able to list all the use cases, and you need to describe the nature of the
interaction each use case represents. In other words, to understand fully the nature of
the supported tasks, you need a use case map identifying all the use cases and their
interrelationships, and you need an interaction narrative defining each use case. Or, in
UML-speak, you need a use case diagram for the application and a flow of events for
each use case.

When it came to cutting corners in the use case modeling, we drew on our experience
with larger, more disciplined projects. On one such effort, we joked that after the first
hundred use cases, everyone on the team had become an expert at writing use case
narratives. You reach the point where, once a use case is identified, you can almost
instantly draft a rough outline of the narrative. Only for some of the more involved or
exotic use cases will the interaction details not be immediately obvious to the
experienced modeler.

This ability, being able to spot the occasional tough nut among the more numerous
soft candies without having to bite into either, suggests one way of cutting corners in
use case modeling. If your team has enough experience in use case modeling, then you
may be able to skip writing the interaction narratives for many of the use cases. As you
identify each use case, you make a quick but informed judgment about whether it
represents an interesting or subtle problem in user-system interaction or just more of
the same fairly obvious stuff.

You end up with a long list of use cases, plus narratives for some of the more
interesting ones. In a pinch, this can pass for an understanding of the tasks to be
supported by the system. In retrospect, this shortcut did not work quite as well as it
sounds, because in the course of modeling the process narratives, you often discover

CHI 2003 - 43 - Larry Constantine | Lucy Lockwood

additional use cases. Thus, the shortcut can leave you with an incomplete list of use
cases, which can mean missing functionality in the system.

Were we to start over, we probably would still hand-wave on many of the simpler
narratives, but would push much harder on developing a complete map of all the use
cases and interrelationships. Without this comprehensive map, critical functions may
be discovered only late in the process, which can cost big-time in redesign. Duh.

Face It
A more successful tradeoff was substituting face-time for modeling. We were lucky to
be collaborating with a team of educators who combined extensive classroom
experience with advanced knowledge of theory and technique. Continuous and ready
access to users and domain experts can allow designers to plug holes quickly, clarify
issues on the fly, and catch mistaken notions early. It is never a recommended practice
to plunge into design with incomplete requirements, but inadequate requirements
models are less costly if you can simply walk across the hall to check out a design idea
or talk over the cubicle wall to resolve the meaning of an ambiguous term.

Both end-users and domain experts are needed. Users are application ground-dwellers,
intimately familiar with the ground covered in their jobs but re latively ignorant of
important issues outside that scope. Domain experts are the hovering hawks of
applications: they know the landscape as a whole but may see less of the practical
details.

Easy access to users and domain experts allows requirements modeling to overlap
parts of design and development. We call it “just-in-time requirements.” Where and
when you need the answer to a question, you get it. In one case, a ten-minute, ad hoc
conversation in the hall was enough for Lucy to pin down the requirements for two
incomplete screen designs.

This game can only be played with the designers, users, and domain experts on the
same playing field. If you have to play telephone tag or wait for email or schedule a
meeting and drive across town to a client site, you are doomed. In fact, Lucy
recognized at the beginning that the only hope for success was to work on-site, full-
time with the client.

Navigating
Normally, we prefer to build an abstract prototype before we get into the final visual
and interaction design. An abstract prototype has two parts: the content model, which
represents how the contents of the user interface are collected for use by users, and
the navigation map, which shows how all the collections are interconnected. In our
experience, abstract prototyping leads to more robust, more innovative designs [see
my article, “Abstract Prototyping,” this magazine, October 1998]. On this project, we
chose to take the more common route and go directly from use cases into designing
the layout and behavior of the user interface.

Skipping both the content model and the navigation map proved to be a mistake, and
we later needed to go back to complete the navigation map before we could finish the
design. The problem is that, without a navigation map showing all the screens, pages,

CHI 2003 - 44 - Larry Constantine | Lucy Lockwood

windows, and dialogs and how they are interconnected, you have no overview of how
everything fits together. Without this picture of the architecture, you make too many
mistakes in placing particular features. Once we completed the navigation map and
validated it with our users and domain experts, the design process got back up to
speed.

Prototypes
We also learned some lessons about using prototypes. Prototypes have many uses. At
their best, they can serve as a proof-of-concept for a challenging approach or as the
foundation for a sound architecture. At their worst, they can end up being shipped out
as a hacked and patched substitute for a real product. In crunch-mode projects,
prototypes can be a costly diversion of resources.

One problem is that prototypes are made to be thrown away, whether in whole or in
part. There are reasonable arguments for building software to throw away [see Phillips,
“Throw-Away Software,” this column, October 1999], but you do not want to do so
unintentionally, certainly not when there is barely time to build one system.

Prototypes can allow you to get something working quickly, but don’t be seduced into
thinking that building prototypes will save you time. When you are caught in a time
crunch, prototypes can become a major time sink. If you know what you are doing,
time spent building a prototype is far better spent building the real thing. If you do not
know what you are doing, building a prototype is one of the more expensive ways to
find out.

Unfortunately, prototypes often serve purposes beyond software engineering. Many
companies, especially start-ups, want a prototype to show off to investors and
potential customers. There are many problems with such demonstration prototypes.
For one thing, the better they look, the more they risk raising expectations—from
customers and from management. Cobble together a slick, working VB prototype, and
people will wonder why it will take months to finish the project. You may be pressured
to “just clean up” the prototype and turn it into a shipping product, or you may have
to explain why the prototype won’t work with real data or in a networked environment.

In any case, all the time you spend putting together a demo or building a prototype is
time you are not building the real thing. True, some portions of well-designed, well-
constructed prototypes may be recyclable into shipped versions, but any prototype
built in crunch mode is probably far too messy and fragile for much to be incorporated
into the end product.

In the worse scenario, which is all too common, you not only lose time creating the
prototype, but then you are expected to baby-sit it, keeping it up-to-date and ready to
show to the next group of visitors being shown around.

Even paper prototypes can carry hidden costs. We use drawing tools to mock up visual
designs for review, inspection, and documentation purposes. Of course, they also make
great illustrations for reports, and can be turned into slides for presentations to
management and … The list goes on. You can find yourself providing and maintaining
PR materials instead of solving design problems.

CHI 2003 - 45 - Larry Constantine | Lucy Lockwood

Teaming
Our crunch-mode project also reinforced for us the value of good teamwork. On the
front-end, we had Chris Gentile and his brilliant team of educators. On the back-end,
we had Larry O’Brien and his crack engineering team responsible for the programming.
We were fortunate to be working with people who could quickly spot the flaws and
holes in our designs or just as quickly implement a major change. When you are five
hours from deadline and up to your eyeballs in interface alligators, nothing can
substitute for a few good developers and one good development manager.

CHI 2003 - 68 - Larry Constantine | Lucy Lockwood

Selected Resources

Books
Ambler, S. 2002 Agile Modeling: Effective Practices for Extreme Programming and the Unified

Process. New York: Wiley.

Beck, K. 2000. Extreme Programming Explained, Reading, MA: Addison-Wesley.

Cockburn, A. 2001 Writing Effective Use Cases. Boston: Addison-Wesley.

Cockburn, A. 2002 Agile Software Development. Boston: Addison-Wesley.

Cooper, A. (1999) The Inmates are Running the Asylum: Why High Tech Products Drive
Us Crazy and How to Restore the Sanity. Indianapolis, IN: SAMS.

Constantine, L. L. (2002) The Peopleware Papers: Notes on the Human Side of Software. Upper
Saddle River, NJ: Prentice Hall.

Constantine, L. L. and Lockwood, L. A. D. L. 1999. Software for Use: A Practical Guide to the
Models and Methods of Usage-Centered Design, Reading, MA: Addison-Wesley.

Jeffries, R., Anderson, A. Hendrickson, C. 2001 Extreme Programming Installed. Boston:
Addison-Wesley.

Web Links
Agile Alliance

www.agilealliance.org/

Agile Modeling
www.agilemodeling.com/

Crystal
www.crystalmethodologies.org/

Extreme Modeling
www.extreme modeling.org/

Extreme Programming:
www.xprogramming.com/
www.extremeprogramming.org/
http://groups.yahoo.com/group/extremeprogramming/.

Usage-Centered Design:
www.foruse.com/
http://groups.yahoo.com/group/usage-centered/

Constantine & Lockwood, Ltd.

