Why do current systems fail?

- Standish Group found that
  51% of projects failed
  31% were partially successful

- Main causes were poor user requirements:
  13.1% Incomplete requirements
  12.4% Lack of user involvement
  10.6% Inadequate resources
  9.9% Unrealistic user expectations
  9.3% Lack of management support
  8.7% Requirements keep changing
  8.1% Inadequate planning
  7.5% System no longer needed

ISO/IEC 9126-1 Software Product Quality Model

- **Quality in use**
  - Functionality:
    - Accuracy
    - Suitability
    - Interoperability
    - Security
  - Usability:
    - Understandability
    - Learnability
    - Operability
    - Attractiveness

- **Reliability**
  - Maturity
  - Fault tolerance
  - Recoverability
  - Availability

- **Efficiency**
  - Time behaviour
  - Resource utilisation

- **Maintainability**
  - Analyzability
  - Changeability
  - Stability
  - Testability

- **Portability**
  - Adaptability
  - Installability
  - Co-existence
  - Replaceability
Usability Requirements: Quality in use
ISO/IEC TR 9126-1: Quality in use metrics

- User performance
  - "all data entry clerks will be able to complete the task with at least 95% accuracy in under 10 minutes"
- User satisfaction
  - "the mean score on the SUMI scale will be greater than 50" More information on quality in use requirements

Usability Requirements: external usability
ISO/IEC TR 9126-2: External metrics

Requirements (which can be tested by using a prototype)
- Understandability
  - Product description and demonstrations
  - Interface functions (e.g. menus) easy to understand
- Learnability
  - Functions learnt quickly
  - Effective user documentation and help
- Operability
  - Understandable messages, undoability, customisability
- Attractiveness
  - Screen layout and colour
Usability Requirements: internal usability
ISO/IEC TR 9126-3: Internal metrics

Requirements (which can be tested by inspecting the specification)

• Understandability
  – Product description complete
  – Interface functions (e.g. menus) easy to understand

• Learnability
  – Complete user documentation and help

• Operability
  – Consistency, self explanatory messages, undoability, customisability
  – GUI style guide

• Attractiveness
  – Screen layout and colour

Types of user requirements
Types of user requirements

• Context of use
  – Users groups and other stakeholders
  – Tasks and scenarios that the system should support
  – Environment: physical and organisational

• Usability: quality in use (summative goals)
  – Task performance scenarios: effectiveness and efficiency
  – Satisfaction

• Usability: detail (summative goals)
  – Interface behaviour
    • External and internal

• Functions to support usability (formative design)
  – General principles to be followed
    • Specific system features to enhance usability

• Efficiency
• Reliability

ISO/IEC CD 25030: Software quality requirements and evaluation – Quality requirements

• Define quality requirements
  – Identify stakeholders
    • end users, developers, producers, trainers, maintainers, disposers, acquirer, supplier organisations and regulatory bodies
  – Elicit requirements from stakeholders
    • Quality in use, External and Internal Quality
  – Analyse the set of requirements
  – Resolve problems
  – Confirm requirements
  – Record requirements

• Formalise quality requirements
  – Specify target values for measures
  – Demonstrate traceability
  – Maintain requirements
ISO 13407: Usability requirements

The specification of user and organizational requirements should
• identify the range of relevant users and other personnel in the design,
• provide a clear statement of the human-centred design goals,
• set appropriate priorities for the different requirements,
• provide measurable criteria against which the emerging design can be tested,
• be confirmed by the users or those representing their interests in the process,
• include any statutory or legislative requirements, and
• be adequately documented.
System lifecycle (TRUMP)

<table>
<thead>
<tr>
<th>Plan Process</th>
<th>Specify Context of Use</th>
<th>Specify Requirements</th>
<th>Design Solutions</th>
<th>Evaluate against Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>feasibility</strong></td>
<td><strong>requirements</strong></td>
<td><strong>design</strong></td>
<td><strong>implement</strong></td>
<td><strong>release</strong></td>
</tr>
</tbody>
</table>

www.usability.serco.com/trump/ucdmethods

Context of Use

- The usability of a product is affected not only by the features of the product itself but also by its Context of Use
- Context is the characteristics of:
  - the users of the product
  - the tasks they carry out
  - the technical, organisational and physical environment in which the product is used
  - the date and time when the product is being used
Usability Context Analysis (UCA)

• Structured method
  – for documenting key aspects of a system which affect usability
• Provides support for:
  – Identifying the (intended) context of use
  – Specifying the context in which usability should be measured
• Helps with problem of generalising from findings
  – Some laboratory studies have been so remote from conditions of actual system use that the relation of the data to life was at best irrelevant and at worst distorting (Whiteside et al., 1988)

Who should be involved?

work analysis

requirements analysts

change management

usability professionals

usability team

IT & peripherals development

training development

user representatives

user support

marketing
Context structure

1. Users
   1.1 User types
   1.2 Skills & knowledge
   1.3 Physical attributes
   1.4 Mental attributes
   1.5 Job characteristics
   1.6 List of tasks
2. Task characteristics
3. Organisational environment
4. Technical environment
5. Physical environment

Example: A bank ATM

Context description:
- The users
- The user characteristics
- The tasks users perform
- The technical environment (hardware and software to support system)
- The physical environment
- The social or organisational environment
New design features to meet contextual needs

- Recess for wheelchair access.
- Speech output for visually impaired users.
- Customisation features for rapid access.
- Finger print for identification.
- Visor appears during sunny weather.
- Buttons light during darkness.
- Alarm button for security alert.

Usability measures (quality in use)

- Task Inputs
- System
- User
- Environment
- Task Time (minutes)
- % Effectiveness
- % Productive Period
- Useful work
- Task Outputs
Effectiveness and Efficiency

• We use a ‘black box’ approach
  – goal-centred and relates to performance objectives
  – process-independent, enabling comparison of different systems, workflows, task allocations, etc. to achieve same goal

Usability requirements

Volumetrics  Estimate values  Existing system

Requirement | effectiveness | efficiency | satisfaction
-------------|---------------|-------------|-----------------
Business prototyping
Usability test | effectiveness | efficiency | satisfaction
Actual | effectiveness | efficiency | satisfaction
Effectiveness costs

Measure consequences, not causes, e.g.:

- Minor inconsistencies 1-10%
- Administrative consequences 10-50%
- Financial implications 1-100%
- Negative business consequences 100%

Effectiveness scores

- An acceptable task output is 100% effective
- Consider each element in the task output in turn, e.g.:
  - What plausible errors could occur in each element?
  - What impact would each type of error have on the stakeholders?
  - How much does this reduce the value of the output?
  - Assign a percentage to each possible error type in each task element
  - For example the inconvenience associated with an error that would be detected later and corrected might reduce the effectiveness by 20%
  - A serious undetected error might reduce the value by 80%
  - The inconvenience of a typo might be judged to reduce the value by 5%
  - Some errors may invalidate the whole output, reducing the value to 0%
Specifying effectiveness

- Choose a user/business task
  - sequence of activities by an individual that meet a user/business goal
- What is the input and the output?
- Consider each element of the output
- What could go wrong with each element?
  - What output errors occur using existing systems and procedures?
  - What types of mistakes might users make?
- Estimate the user/business impact of each error situation
  - For each element of the task output that has an error, subtract the appropriate percentage
  - Subtract each percentage from 100 to give the overall effectiveness
  - If the sum of errors greater than 100, the effectiveness is 0%
- Calculate the average effectiveness
  - What is the relative frequency of correct results and each error scenario?
  - Multiply each effectiveness scenario by the frequency and calculate the average

Effectiveness calculation

<table>
<thead>
<tr>
<th>Output element</th>
<th>Error scenario</th>
<th>Impact</th>
<th>Business value</th>
<th>Frequenc y</th>
<th>Value x frequency</th>
<th>Impact x frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>Not sent</td>
<td>10%</td>
<td>90%</td>
<td>1%</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>Corrected d.o.b.</td>
<td>Wrong d.o.b.</td>
<td>50%</td>
<td>50%</td>
<td>2%</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Payment made</td>
<td>No payment</td>
<td>100%</td>
<td>0%</td>
<td>1%</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>No errors</td>
<td>0%</td>
<td>100%</td>
<td>96%</td>
<td>9600</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>Mean value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97.9%</td>
</tr>
</tbody>
</table>
Setting effectiveness and efficiency targets

- What assumptions about task time and accuracy have been made in the Volumetrics, Performance and Staffing models?

- What is known about the time and accuracy of existing similar procedures
  - The new system should be at least as good as the existing systems

- Set a target range
  - Objective for effectiveness and efficiency
  - Worst case (e.g. must be at least as good as existing systems)

User satisfaction: SUMI questionnaire

- Chart showing user satisfaction scores for Global, Efficiency, Affect, Helpfulness, Control, and Learnability.
  - Comparison between New System and Old System.
Detailed usability requirements

- Understandability
  - Interface elements (e.g. menus, controls) should be easy to understand
  - For a walk up and purchase or use system, the purpose of the system should be easily understandable
- Learnability
  - The user documentation and help should be complete
  - The help should be context sensitive and explain how to achieve common tasks
  - The system should be easy to learn
- Operability
  - The interface actions and elements should be consistent
  - Error messages should explain how to recover from the error
  - Undo should be available for most actions
  - Actions which cannot be undone should ask for confirmation
  - The system should be customisable to meet specific user needs
  - A style guide should be used
- Attractiveness
  - The system design and screen layout and colour should be appealing

Other usability metrics

- Number of errors
  - Interesting to measure, but what does it mean?

- Number of assists
  - Would there be assists in real life?

- Preference for features
  - A formative measure
Why is summative usability testing important?

- Summative testing is about meeting business and user needs
  - Effectiveness: success in achieving goals
  - Efficiency: productivity, staffing, waiting time in line
  - Satisfaction: willingness to use the system

Differences between summative and formative testing

- Formative: diagnosis
  - Identify usability defects
  - Understand user problems
  - Early in design
  - Fast iteration
  - Eliminate as many problems as possible

- Summative: measurement
  - How usable is the product?
  - Does it meet the usability requirements?
  - Does it need further improvement?
Measurement needs a more rigorous procedure

<table>
<thead>
<tr>
<th>Diagnostic</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-4 users</td>
<td>at least 8 users</td>
</tr>
<tr>
<td>think aloud</td>
<td>natural</td>
</tr>
<tr>
<td>prompted</td>
<td>not assisted</td>
</tr>
<tr>
<td>informal</td>
<td>controlled</td>
</tr>
<tr>
<td>qualitative results</td>
<td>quantitative results</td>
</tr>
</tbody>
</table>

The danger of not setting usability requirements

- New software for issuing UK passports
  - Installed in passport issuing offices
  - Took operators twice as long
  - Caused delays of up to 3 months in obtaining a passport
  - Huge cost of additional clerical staff

- E-commerce web sites
  - User success in purchasing ranges from 25%-42%
Summative testing

- Summative testing is unfashionable
  - Much early usability work used summative methods
    - Whiteside et al, 1988
  - Not always supported by other user centred design activities
  - Gained the reputation for being an expensive way to identify problems when it was too late to fix them!
- The emphasis moved to formative evaluation
  - So-called “discount” usability methods that can be used earlier in development
- Without subsequent summative testing, it is difficult to judge the effectiveness of the usability work

Part 5. Common Industry Format for usability test reports

- NIST initiative
  - National Institute of Standards and Technology
- Suppliers provide standard test reports to purchasers
- Suppliers include:
  - IBM, Microsoft, HP, Sun, Oracle, Compaq
- Purchasers include:
  - Boeing, Northwest Mutual Life, State Farm Insurance, Fidelity, Kodak
- Reports provided in confidence
- Could permit comparisons
**CIF motivation**

- **Boeing**
  "We traditionally have had little visibility of how usable a product will be or how much training and support users will need. This has made it difficult to compare products, to plan for support, or estimate total cost of ownership."

- **US WEST**
  "US WEST has been actively participating in [the CIF] initiative and will clearly benefit from the results of this effort such as a standard testing process for usability, a standard specification for reporting usability tests, and other techniques to enable us to partner more effectively with our vendors."

- **State Farm Insurance**
  "We have found it difficult to identify software products that meet our needs without contributing to excessive overhead, increasing support costs, or negatively impacting employee productivity or morale. If successful the [CIF] initiative should result in the development of better, more usable software for all of industry."

---

**CIF objectives**

[Diagram showing supply chain and usability requirements]
### Usability test report format

1. Title page  
2. Executive summary  
3. Introduction  
   - 3.1 Product description  
   - 3.2 Test objectives  
4. Method  
   - 4.1 Participants  
   - 4.2 Context of use in the test  
   - 4.3 Experimental design  
   - 4.4 Usability metrics  
5. Results  
6. Appendices

### Product usability requirements format

1. Title page  
2. Executive summary  
3. Product details  
   - 3.1 Product description  
   - 3.2 Product objectives  
4. Requirements  
   - Users, tasks, scenarios, metrics, computer, display, environment

### Usability test requirements format

1. Users  
2. Context of use in the test  
3. Test procedure  
4. Usability metrics  
5. Appendices

---

### Usability as part of procurement

- Evaluate existing system to establish a baseline  
  - Completion rate, task time, user satisfaction

- Specify usability requirements  
  - At least as good as the baseline  
  - Design issues arising from Baseline evaluation

- [need to use UCD methods in development]  

- Evaluate first working prototype of the new system  
  - Negotiate solution if targets are not being met
## Benefits of the CIF

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Usability costs money</strong></td>
<td>Usability saves money</td>
</tr>
<tr>
<td><strong>Usability is an interface issue</strong></td>
<td>Usability is a business issue</td>
</tr>
<tr>
<td><strong>Usability is not part of the process</strong></td>
<td>ISO 13407 user centred design process</td>
</tr>
<tr>
<td><strong>No usability requirements</strong></td>
<td>Use Common Industry Format for requirements</td>
</tr>
<tr>
<td><strong>Customers don’t ask for usability</strong></td>
<td>Provide Common Industry Format usability results</td>
</tr>
<tr>
<td><strong>Buyers can’t assess usability</strong></td>
<td>Ask for Common Industry Format usability results</td>
</tr>
</tbody>
</table>

### Usability Net

**Planning & Feasibility**
- Getting started
- Stakeholder meeting
- Analyse content
- ISO 13407
- Planning
- Competitor Analysis

**Requirements**
- User Surveys
- Interviews
- Contextual Inquiry
- User Observation
- Context

**Design**
- Design guidelines
- Paper prototyping
- Heuristic evaluation
- Parallel design
- Storyboarding

**Implementation**
- Style guides
- Rapid prototyping
- Heuristic evaluation
- Interface design patterns

**Test & Measure**
- Diagnostic evaluation
- Performance testing
- Heuristic evaluation
- Critical incidence technique

**Post Release**
- User surveys
- Remote evaluation
- Pleasure

[www.usabilitynet.org](http://www.usabilitynet.org)